Lecture Notes, April 8, 2011

Convexity

A set of points S in R^N is said to be convex if the line segment between any two points of the set is completely included in the set.

S is <u>convex</u> if x, y \in S, implies $\{z \mid z = \alpha x + (1 - \alpha)y, 0 \le \alpha \le 1\} \subseteq S$. S is said to be <u>strictly convex</u> if x, $y \in S$, $x \ne y$, $0 < \alpha < 1$, implies $\alpha x + (1 - \alpha)y \in$ interior S.

The notion of convexity is that a set is convex if it is connected, has no holes on the inside and no indentations on the boundary. A set is strictly convex if it is convex and has a continuous strict curvature (no flat segments) on the boundary.

Economically, this notion corresponds to "diminishing marginal utility" "diminishing marginal rate of substitution" "diminishing marginal product".

Properties of Convex Sets

Let C_1 , C_2 be convex subsets of $\mathbb{R}^{\mathbb{N}}$. Then: $C_1 \cap C_2$ is convex, $C_1 + C_2$ is convex, \overline{C}_1 is convex, The unit simplex in \mathbf{R}^N , is

$$P = \left\{ p \mid p \in \mathbb{R}^N, p_i \ge 0, i = 1, \dots, N, \sum_{i=1}^N p_i = 1 \right\}.$$
 (5.1)

The unit simplex is a (generalized) triangle in N-space.

Note that P is compact (closed and bounded) and convex.

Theorem 5.1 (Brouwer Fixed-Point Theorem) Let $f(\cdot)$ be a continuous function, $f: P \to P$. Then there is $x^* \in P$ so that $f(x^*) = x^*$.

The four properties assumed in the Brouwer Fixed Point Theorem — continuity of f, closedness, boundedness, and convexity of P — are all essential to the theorem. Omit any one of them and the theorem fails.

The result can be generalized from P to any compact convex set.